Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(12): e202301461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37961037

RESUMO

Precipitate generation is a challenging issue during the production of herbal decoction as it affects the stability and bioavailability of active compounds. Here we explored the composition of the natural precipitate formed from and its effect on drug release of Scutellaria baicalensis-Coptis chinensis paired extract (SCPE). Furthermore, the surface morphology of the SCPE precipitate was also investigated. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to chemical component analysis and field emission scanning electron microscope (FE-SEM) was performed to particle observation. Baicalin (BA), berberine (BBR) and starch-arginine-rich polymers were abundant in the SCPE precipitate. FE-SEM micrographs showed spheroidal shaped particles in the SCPE supernatant, while spherical and porous tissue-shaped particles in the SCPE precipitate. In vitro drug release of baicalin and berberine contained in the precipitate may increase as the polymer is removed. The presence of polymer-related interactions were confirmed by the greater increase in solubility of baicalin upon addition of arginine and polymer. This was also supported by the solubility decrease of the BA-BBR complex in polymer solution and the gelation of the BA-BBR complex in arginine solution. Our results provide a scientific basis for elucidating the pharmaceutical properties of the decoction of S. baicalensis-C. chinensis-based herbal medicine.


Assuntos
Berberina , Coptis , Medicamentos de Ervas Chinesas , Arginina , Berberina/análise , Berberina/química , Cromatografia Líquida , Coptis/química , Coptis chinensis , Liberação Controlada de Fármacos , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais , Polímeros , Scutellaria baicalensis/química , Espectrometria de Massas em Tandem
2.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686078

RESUMO

Spirodela polyrhiza (L.) SCHLEID. has been used to treat epidemic fever, dysuria, and various skin ailments, such as measles eruptions, eczema, and pruritus, in China, Japan, and Korea. In this study, the active compounds in S. polyrhiza and their target genes were identified by network-based analysis. Moreover, the study evaluated the effects of a 70% ethanolic extract of S. polyrhiza (EESP) on skin lesions, histopathological changes, inflammatory cytokines, and chemokines in mice with contact dermatitis (CD) induced by 1-fluoro-2,4-dinitrobenzene (DNFB), and examined the inhibitory effects of EESP on mitogen-activated protein kinase (MAPK) signalling pathways. In our results, 14 active compounds and 29 CD-related target genes were identified. Among them, tumour necrosis factor (TNF) and interleukin 6 (IL-6) were identified as hub genes, and luteolin and apigenin showed a strong binding affinity with TNF (<-8 kcal/mol) and IL-6 (<-6 kcal/mol). Our in vivo studies showed that topical EESP ameliorated DNFB-induced skin lesions and histopathological abnormalities, and reduced the levels of TNF-α, interferon (IFN)-É£, IL-6, and monocyte chemotactic protein (MCP)-1 in inflamed tissues. In conclusion, our findings suggest the potential for dermatological applications of S. polyrhiza and suggest that its anti-dermatitis action is related to the inhibition of TNF and IL-6 by luteolin and luteolin glycosides.


Assuntos
Araceae , Dermatite de Contato , Animais , Camundongos , Dinitrofluorbenzeno , Interleucina-6 , Luteolina , Fator de Necrose Tumoral alfa , Dinitrobenzenos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
3.
Chem Biodivers ; 19(12): e202200703, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36323637

RESUMO

Atractylodes plants have been used in traditional herbal medicine to treat gastrointestinal diseases and contain various chemical compounds. Sesquiterpenoids are the most important therapeutic compounds in Atractylodes rhizomes. Based on studies reported from 2000 to 2022, we classified sesquiterpenoids by their chemical skeletons and original resources. Moreover, we discussed their biosynthesis and physicochemical and pharmacological features. We reported sesquiterpenoids with skeletal moieties, such as monocyclic sesquiterpenes (bisabolene- and elemene-type), bicyclic sesquiterpenes (eudesmane-, isopterocarpolone-, hydroxycarissone-, eremophilane-, bisesquiterpenoid-, guaiane- and spirovetivane-type and eudesmane lactones) and tricyclic sesquiterpenes (cyperene- and patchoulene-type), with their biosynthetic pathways, chemical modifications and in vivo metabolites. The pharmacological activities of sesquiterpenoids as anti-inflammatory, anti-tumor, anti-diabetic and anti-microbial and for treating gastrointestinal disorders have been reported for this genus.


Assuntos
Atractylodes , Sesquiterpenos de Eudesmano , Sesquiterpenos , Rizoma/química , Atractylodes/química , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos de Eudesmano/química
4.
Commun Biol ; 5(1): 957, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100628

RESUMO

Conditioned medium (CM) contains various therapeutic molecules produced by cells. However, the low concentration of therapeutic molecules in CM is a major challenge for successful tissue regeneration. Here, we aim to develop a CM enriched in angiogenic paracrine factors for the treatment of ischemic diseases. Combining spheroidal culture and light irradiation significantly upregulates the angiogenic factor expression in human adipose-derived stem cells (hADSCs). Spheroids of light-irradiated hADSCs (SR group) show significantly enhanced expression of angiogenic paracrine factors compared with spheroids without light stimulation. Enhanced viability, migration, and angiogenesis are observed in cells treated with CM derived from the SR group. Furthermore, we performed in vivo experiments using a mouse hindlimb ischemia model; the results demonstrate that CM derived from densely cultured spheroids of light-irradiated hADSCs induced increased angiogenesis in vivo. In conclusion, our proposed approach of using light to stimulate stem cells may overcome the major drawbacks of CM-based therapies.


Assuntos
Adipócitos , Tecido Adiposo , Indutores da Angiogênese , Animais , Meios de Cultivo Condicionados/farmacologia , Humanos , Isquemia/terapia , Neovascularização Patológica , Células-Tronco
5.
Stem Cell Res Ther ; 13(1): 215, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619187

RESUMO

BACKGROUND: Human adipose-derived stem cells (hADSCs) have been widely used for regenerative medicine because of their therapeutic efficacy and differentiation capacity. However, there are still limitations to use them intactly due to some difficulties such as poor cell engraftment and viability after cell transplantation. Therefore, techniques such as photobiomodulation (PBM) are required to overcome these limitations. This study probed improved preclinical efficacy of irradiated hADSCs and its underlying molecular mechanism. METHODS: hADSCs were irradiated with green organic light-emitting diodes (OLEDs). Treated cells were analyzed for mechanism identification and tissue regeneration ability verification. Expression levels of genes and proteins associated with photoreceptor, cell proliferation, migration, adhesion, and wound healing were evaluated by performing multiple assays and immunostaining. Excision wound models were employed to test in vivo therapeutic effects. RESULTS: In vitro assessments showed that Opsin3 (OPN3) and OPN4 are both expressed in hADSCs. However, only OPN4 was stimulated by green OLED irradiation. Cell proliferation, migration, adhesion, and growth factor expression in treated hADSCs were enhanced compared to control group. Conditioned medium containing paracrine factors secreted from irradiated hADSCs increased proliferation of human dermal fibroblasts and normal human epidermal keratinocytes. Irradiated hADSCs exerted better wound healing efficacy in vivo than hADSCs without OLED irradiation. CONCLUSIONS: Our study introduces an intracellular mechanism of PBM in hADSCs. Our results revealed that photoreceptor OPN4 known to activate Gq-protein and consequently lead to reactive oxygen species production responded to OLED irradiation with a wavelength peak of 532 nm. In conclusion, green OLED irradiation can promote wound healing capability of hADSCs, suggesting that green OLED has potential preclinical applications.


Assuntos
Adipócitos , Células-Tronco , Tecido Adiposo , Diferenciação Celular/fisiologia , Humanos , Opsinas de Bastonetes/metabolismo , Células-Tronco/metabolismo , Cicatrização/fisiologia
6.
Small ; 18(36): e2106569, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35322545

RESUMO

The unique biological characteristics and promising clinical potential of extracellular vesicles (EVs) have galvanized EV applications for regenerative medicine. Recognized as important mediators of intercellular communication, naturally secreted EVs have the potential, as innate biotherapeutics, to promote tissue regeneration. Although EVs have emerged as novel therapeutic agents, challenges related to the clinical transition have led to further functionalization. In recent years, various engineering approaches such as preconditioning, drug loading, and surface modification have been developed to potentiate the therapeutic outcomes of EVs. Also, limitations of natural EVs have been addressed by the development of artificial EVs that offer advantages in terms of production yield and isolation methodologies. In this review, an updated overview of current techniques is provided for the functionalization of natural EVs and recent advances in artificial EVs, particularly in the scope of regenerative medicine.


Assuntos
Vesículas Extracelulares , Medicina Regenerativa , Transporte Biológico , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos
7.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572752

RESUMO

High LOX levels in the tumor microenvironment causes the cross-linking of extracellular matrix components and increases the stiffness of tumor tissue. Thus, LOX plays an important role in tumorigenesis and in lowering the tumor response to anticancer drugs. Despite comprehensive efforts to identify the roles of LOX in the tumor microenvironment, sensitive and accurate detection methods have not yet been established. Here, we suggest the use of gold nanoparticles functionalized with LOX-sensitive peptides (LS-AuNPs) that aggregate upon exposure to LOX, resulting in a visual color change. LOX-sensitive peptides (LS-peptides) contain lysine residues that are converted to allysine in the presence of LOX, which is highly reactive and binds to adjacent allysine, resulting in the aggregation of the AuNPs. We demonstrated that the synthesized LS-AuNPs are capable of detecting LOX sensitively, specifically both in vitro and in the tissue extract. Moreover, the suggested LS-AuNP-based assay is more sensitive than commonly employed assays or commercially available kits. Therefore, the LS-AuNPs developed in this study can be used to detect LOX levels and can be further used to predict the stiffness or the anticancer drug resistance of the tumor.

8.
Pharmaceutics ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452116

RESUMO

Restoring hair follicles by inducing the anagen phase is a promising approach to prevent hair loss. Hair follicle dermal papilla cells (HFDPCs) play a major role in hair growth via the telogen-to-anagen transition. The therapeutic effect of Morus alba activates ß-catenin in HFDPCs, thereby inducing the anagen phase. The HFDPCs were treated with M. alba root extract (MARE) to promote hair growth. It contains chlorogenic acid and umbelliferone and is not cytotoxic to HFDPCs at a concentration of 20%. It was demonstrated that a small amount of MARE enhances growth factor secretion (related to the telogen-to-anagen transition). Activation of ß-catenin was observed in MARE-treated HFDPCs, which is crucial for inducing the anagen phase. The effect of conditioned medium derived from MARE-treated HFDPCs on keratinocytes and endothelial cells was also investigated. The findings of this study demonstrate the potency of MARE in eliciting the telogen-to-anagen transition.

9.
Small ; 17(32): e2101207, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216428

RESUMO

Severe cardiac damage following myocardial infarction (MI) causes excessive inflammation, which sustains tissue damage and often induces adverse cardiac remodeling toward cardiac function impairment and heart failure. Timely resolution of post-MI inflammation may prevent cardiac remodeling and development of heart failure. Cell therapy approaches for MI are time-consuming and costly, and have shown marginal efficacy in clinical trials. Here, nanoparticles targeting the immune system to attenuate excessive inflammation in infarcted myocardium are presented. Liposomal nanoparticles loaded with MI antigens and rapamycin (L-Ag/R) enable effective induction of tolerogenic dendritic cells presenting the antigens and subsequent induction of antigen-specific regulatory T cells (Tregs). Impressively, intradermal injection of L-Ag/R into acute MI mice attenuates inflammation in the myocardium by inducing Tregs and an inflammatory-to-reparative macrophage polarization, inhibits adverse cardiac remodeling, and improves cardiac function. Nanoparticle-mediated blocking of excessive inflammation in infarcted myocardium may be an effective intervention to prevent the development of post-MI heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Nanopartículas , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/prevenção & controle , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Miocárdio
10.
Tissue Eng Regen Med ; 18(5): 807-818, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251653

RESUMO

BACKGROUND: Various cell-culture systems have been used to evaluate drug toxicity in vitro. However, factors that affect cytotoxicity outcomes in drug toxicity evaluation systems remain elusive. In this study, we used multilayered sheets of cardiac-mimetic cells, which were reprogrammed from human fibroblasts, to investigate the effects of the layer number on drug cytotoxicity outcomes. METHODS: Cell sheets of cardiac-mimetic cells were fabricated by reprogramming of human fibroblasts into cardiac-mimetic cells via coculture with cardiac cells and electric stimulation, as previously described. Double-layered cell sheets were prepared by stacking the cell sheets. The mono- and double-layered cell sheets were treated with 5-fluorouracil (5-FU), an anticancer drug, in vitro. Subsequently, apoptosis and lipid peroxidation were analyzed. Furthermore, effects of cardiac-mimetic cell density on cytotoxicity outcomes were evaluated by culturing cells in monolayer at various cell densities. RESULTS: The double-layered cell sheets exhibited lower cytotoxicity in terms of apoptosis and lipid peroxidation than the mono-layered sheets at the same 5-FU dose. In addition, the double-layered cell sheets showed better preservation of mitochondrial function and plasma membrane integrity than the monolayer sheets. The lower cytotoxicity outcomes in the double-layered cell sheets may be due to the higher intercellular interactions, as the cytotoxicity of 5-FU decreased with cell density in monolayer cultures of cardiac-mimetic cells. CONCLUSION: The layer number of cardiac-mimetic cell sheets affects drug cytotoxicity outcomes in drug toxicity tests. The in vitro cellular configuration that more closely mimics the in vivo configuration in the evaluation systems seems to exhibit lower cytotoxicity in response to drug.


Assuntos
Coração , Preparações Farmacêuticas , Células Cultivadas , Técnicas de Cocultura , Fibroblastos , Humanos
11.
Biomaterials ; 272: 120791, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831739

RESUMO

The effective chemotherapeutic drug, doxorubicin (DOX), elicits immunogenic cell death (ICD) and additional anticancer immune responses during chemotherapy. However, it also induces severe side effects and systemic immunosuppression, hampering its wide clinical application. Herein, we constructed cancer-activated DOX prodrug by conjugating the cathepsin B-cleavable peptide (Phe-Arg-Arg-Gly, FRRG) to a doxorubicin (DOX), resulting in FRRG-DOX that self-assembled into cancer-activated DOX prodrug nanoparticles (CAP-NPs). The resulting CAP-NPs were further stabilized with the FDA-approved compound, Pluronic F68. CAP-NPs formed stable prodrug nanoparticles and they were specifically cleaved to cytotoxic DOX molecules only in cathepsin B-overexpressing cancer cells, inducing a cancer cell-specific cytotoxicity. In particular, the CAP-NPs induced ICD through cathepsin B-cleavage mechanism only in targeted cancer cells in vitro. In colon tumor-bearing mice, selectively accumulated CAP-NPs at tumors enhanced antitumor immunity without DOX-related severe toxicity, inflammatory response and systemic immunosuppression. Moreover, cytotoxicity against immune cells infiltrated into tumor microenvironment was significantly reduced compared to free DOX, leading to increased response to checkpoint inhibitor immunotherapy. The combinatorial treatment of CAP-NPs with anti-PD-L1 exhibited high rate of complete tumor regression (50%) compared to free DOX with anti-PD-L1. Concurrently, DOX-related side effects were greatly reduced during chemoimmunotherapy. Collectively, our results suggest that cancer-activated DOX prodrug nanoparticles provide a promising approach to increase clinical benefit by inducing an immune response preferentially only to targeted cancer cells, not to normal cells and immune cells, and potentiates checkpoint inhibitor immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Doxorrubicina , Imunidade , Camundongos , Neoplasias/tratamento farmacológico
12.
Materials (Basel) ; 14(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669122

RESUMO

As a tissue regeneration strategy, the utilization of mesenchymal stem cells (MSCs) has drawn considerable attention. Comprehensive research using MSCs has led to significant preclinical or clinical outcomes; however, improving the survival rate, engraftment efficacy, and immunogenicity of implanted MSCs remains challenging. Although MSC-derived exosomes were recently introduced and reported to have great potential to replace conventional MSC-based therapeutics, the poor production yield and heterogeneity of exosomes are critical hurdles for their further applications. Herein, we report the fabrication of exosome-mimetic MSC-engineered nanovesicles (MSC-NVs) by subjecting cells to serial extrusion through filters. The fabricated MSC-NVs exhibit a hydrodynamic size of ~120 nm, which is considerably smaller than the size of MSCs (~30 µm). MSC-NVs contain both MSC markers and exosome markers. Importantly, various therapeutic growth factors originating from parent MSCs are encapsulated in the MSC-NVs. The MSC-NVs exerted various therapeutic effects comparable to those of MSCs. They also significantly induced the angiogenesis of endothelial cells and showed neuroprotective effects in damaged neuronal cells. The results collectively demonstrate that the fabricated MSC-NVs can serve as a nanosized therapeutic agent for tissue regeneration.

13.
J Tissue Eng ; 12: 20417314211067004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987748

RESUMO

Comprehensive research has led to significant preclinical outcomes in modified human adipose-derived mesenchymal stem cells (hADSCs). Photobiomodulation (PBM), a technique to enhance the cellular capacity of stem cells, has attracted considerable attention owing to its effectiveness and safety. Here, we suggest a red organic light-emitting diode (OLED)-based PBM strategy to augment the therapeutic efficacy of hADSCs. In vitro assessments revealed that hADSCs basked in red OLED light exhibited enhanced angiogenesis, cell adhesion, and migration compared to naïve hADSCs. We demonstrated that the enhancement of cellular capacity was due to an increased level of intracellular reactive oxygen species. Furthermore, accelerated healing and regulated inflammatory response was observed in mice transplanted with red light-basked hADSCs. Overall, our findings suggest that OLED-based PBM may be an easily accessible and attractive approach for tissue regeneration that can be applied to various clinical stem cell therapies.

14.
J Control Release ; 328: 222-236, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32866592

RESUMO

One of the most promising approaches for the treatment of colorectal cancer is targeting epidermal growth factor receptor (EGFR). Comprehensive research has led to significant clinical outcomes using EGFR-targeted anticancer drugs; however, the response to these drugs still largely varies among individuals. The current diagnostic platform provides limited information that does not enable successful prediction of the anticancer performance of EGFR-targeted drugs. Here, we developed a EGFR-targeted activatable probe for predicting therapeutic efficacy of EGFR-targeted doxorubicin prodrug in colorectal cancer therapy. The EGF-conjugated fluorescence-activatable probe (EGF-probe) and EGF-conjugated doxorubicin prodrug (EGF-prodrug) were both fabricated using peptide substrates that can be dissociated by lysosomal enzymes, and thus share an intracellular mechanism of action. We demonstrated that after EGFR-mediated endocytosis, lysosomal enzymes de-quench the fluorescence of EGF-probe and activate the cytotoxicity of EGF-prodrug. When evaluated in vivo, EGF-probe yielded an outstanding cancer-specific imaging ability with reduced background signals. EGF-prodrug also successfully targeted the tumor and promoted cancer cell death. We tested different colorectal cancer cell types to investigate the correlation between the fluorescence recovery efficiency of EGF-probe and the cytotoxicity of EGF-prodrug. Strong correlations were observed both in vitro and in vivo. The actions of EGF-probe and EGF-prodrug were dependent on the inherent lysosomal activity of the cell type rather than its EGFR expression level. Our proposed approach using EGF-probe and EGF-prodrug may overcome the major drawback of the conventional theranostic platform and provide great opportunity for successful personalized cancer therapy.


Assuntos
Fator de Crescimento Epidérmico , Pró-Fármacos , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Resultado do Tratamento
15.
Adv Mater ; 32(39): e2003368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32812291

RESUMO

Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-ß1 (TGF-ß1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-ß1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Linfócitos T/imunologia , Linhagem Celular Tumoral , Humanos , Nanomedicina
16.
Sci Adv ; 6(18): eaaz0952, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494669

RESUMO

Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia , Apoptose , Exossomos/metabolismo , Humanos , Nanopartículas Magnéticas de Óxido de Ferro
17.
Biomaterials ; 243: 119942, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32179302

RESUMO

Exosomes and extracellular nanovesicles (NV) derived from mesenchymal stem cells (MSC) may be used for the treatment of ischemic stroke owing to their multifaceted therapeutic benefits that include the induction of angiogenesis, anti-apoptosis, and anti-inflammation. However, the most serious drawback of using exosomes and NV for ischemic stroke is the poor targeting on the ischemic lesion of brain after systemic administration, thereby yielding a poor therapeutic outcome. In this study, we show that magnetic NV (MNV) derived from iron oxide nanoparticles (IONP)-harboring MSC can drastically improve the ischemic-lesion targeting and the therapeutic outcome. Because IONP stimulated expressions of therapeutic growth factors in the MSC, MNV contained greater amounts of those therapeutic molecules compared to NV derived from naive MSC. Following the systemic injection of MNV into transient middle-cerebral-artery-occlusion (MCAO)-induced rats, the magnetic navigation increased the MNV localization to the ischemic lesion by 5.1 times. The MNV injection and subsequent magnetic navigation promoted the anti-inflammatory response, angiogenesis, and anti-apoptosis in the ischemic brain lesion, thereby yielding a considerably decreased infarction volume and improved motor function. Overall, the proposed MNV approach may overcome the major drawback of the conventional MSC-exosome therapy or NV therapy for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Fenômenos Magnéticos , Ratos , Acidente Vascular Cerebral/terapia
18.
Nano Lett ; 19(8): 5185-5193, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298024

RESUMO

Liposomes are clinically used as drug carriers for cancer therapy; however, unwanted leakage of the encapsulated anticancer drug and poor tumor-targeting efficiency of liposomes may generate toxic side effects on healthy cells and lead to failure of tumor eradication. To overcome these limitations, we functionalized liposomes with a photosensitizer (KillerRed, KR)-embedded cancer cell membrane (CCM). A lipid adjuvant was also embedded in the lipocomplex to promote the anticancer immune response. KR proteins were expressed on CCM and did not leak from the lipocomplex. Owing to the homotypic affinity of the CCM for the source cancer cells, the lipocomplex exhibited a 3.3-fold higher cancer-targeting efficiency in vivo than a control liposome. The liposome functionalized with KR-embedded CCM and lipid adjuvant generated cytotoxic reactive oxygen species in photodynamic therapy and effectively induced anticancer immune responses, inhibiting primary tumor growth and lung metastasis in homotypic tumor-bearing mice. Taken together, the lipocomplex technology may improve liposome-based cancer therapy.


Assuntos
Fatores Imunológicos/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Membrana Celular/patologia , Proteínas de Fluorescência Verde/uso terapêutico , Humanos , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia
19.
Int Immunopharmacol ; 72: 124-130, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30978647

RESUMO

The effects of daucosterol have been identified in cancer therapy and neuronal diseases. However, the regulatory function of daucosterol in DSS-induced colitis has not yet been investigated. In this study, we evaluated the immunological and therapeutic effects of daucosterol in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Unlike vehicle mice, mice pre- or post-treated with daucosterol showed inhibition of body weight loss and the decrease in the disease activity index (DAI). In addition, daucosterol treatment rescued the DSS-induced decrease in colon length and disruption of the epithelial lining. Furthermore, it reduced DSS-induced production of reactive oxygen species (ROS), infiltration of macrophages, and expression of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1ß. Mice with colitis showed a decreased population of Foxp3+ cells, which was upregulated by daucosterol treatment. Furthermore, daucosterol increased natural killer (NK) cell activity and inhibited excessive IgA levels in mice with DSS-induced colitis. Collectively, our findings demonstrated that daucosterol significantly alleviated DSS-induced colitis, indicating the possibility of daucosterol as a therapeutic option for colitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Sitosteroides/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/genética , Citocinas/imunologia , Sulfato de Dextrana , Feminino , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Sitosteroides/farmacologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
20.
ACS Nano ; 13(3): 3206-3217, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30830763

RESUMO

Poor O2 supply to the infiltrated immune cells in the joint synovium of rheumatoid arthritis (RA) up-regulates hypoxia-inducible factor (HIF-1α) expression and induces reactive oxygen species (ROS) generation, both of which exacerbate synovial inflammation. Synovial inflammation in RA can be resolved by eliminating pro-inflammatory M1 macrophages and inducing anti-inflammatory M2 macrophages. Because hypoxia and ROS in the RA synovium play a crucial role in the induction of M1 macrophages and reduction of M2 macrophages, herein, we develop manganese ferrite and ceria nanoparticle-anchored mesoporous silica nanoparticles (MFC-MSNs) that can synergistically scavenge ROS and produce O2 for reducing M1 macrophage levels and inducing M2 macrophages for RA treatment. MFC-MSNs exhibit a synergistic effect on O2 generation and ROS scavenging that is attributed to the complementary reaction of ceria nanoparticles (NPs) that can scavenge intermediate hydroxyl radicals generated by manganese ferrite NPs in the process of O2 generation during the Fenton reaction, leading to the efficient polarization of M1 to M2 macrophages both in vitro and in vivo. Intra-articular administration of MFC-MSNs to rat RA models alleviated hypoxia, inflammation, and pathological features in the joint. Furthermore, MSNs were used as a drug-delivery vehicle, releasing the anti-rheumatic drug methotrexate in a sustained manner to augment the therapeutic effect of MFC-MSNs. This study highlights the therapeutic potential of MFC-MSNs that simultaneously generate O2 and scavenge ROS, subsequently driving inflammatory macrophages to the anti-inflammatory subtype for RA treatment.


Assuntos
Acetatos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Cério/farmacologia , Compostos Férricos/farmacologia , Compostos de Manganês/farmacologia , Nanopartículas/química , Acetatos/síntese química , Acetatos/química , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cério/química , Modelos Animais de Doenças , Compostos Férricos/síntese química , Compostos Férricos/química , Adjuvante de Freund , Masculino , Compostos de Manganês/síntese química , Compostos de Manganês/química , Oxigênio/metabolismo , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...